

Tungsteno Molibdeno

Via Sisinnio, 41 - 00178 Roma Tel. 06. 959.45.021 - Fax 06.565.61.697 info@teknosteelsrl.com - www.teknosteelsrl.com P.IVA/C.F. 11611351005

La tua filiera inizia da qui.

Azienda leader nella produzione e commercializzazione di materie prime, TeknoSteel offre ai propri partner un servizio pre e post-vendita, garantendo inoltre una consulenza frutto di anni di esperienza nell'industria metalmeccanica.

Professionalità, passione e tempestività, sono i valori su cui si fonda l'azienda, in grado di fornire oggi, alcune tra le materie nobili per eccellenza: tungsteno, molibdeno, tzm.

TUNGSTENO

Il tungsteno è probabilmente il metallo di transizione più conosciuto per le sue proprietà reologiche.

TeknoSteel effettua commercio di tungsteno in Italia e all'Estero prevalentemente per aziende che si occupano di applicazioni elettriche e più in generale in tutto il settore industriale.

Come per gli altri metalli non ferrosi anche il tungsteno trova importante impiego in svariate tipologie di leghe oltre che per aumentare la durezza dell'acciaio.

Alcune applicazioni del Tungsteno:

- Industria mineraria, petrolifera e delle costruzioni.
- Leghe pesanti per armamenti.
- Catalizzatori e lubrificanti ad alta temperatura.
- Acciai rapidi, giunture stagne, impianti di fusione nucleare ecc.

Prodotti	Aspetto	Densità	Purezza	Spessore	Specifiche	Utilizzo
Tungsteno Tondo in Barre	Argentato Lucente	≥ 19.2 g/cm ³	≥ 99.95 %	-	Diam. 0.5/100 mm	Elettrodi, elementi interno forni
Tungsteno in Lastre	Argentato Lucente	≥ 19.2 g/cm ³	≥ 99.95 %	0.1/2.0 mm	Può essere fornito lucidato, grezzo, ecc.	Interno forni, fonti di calore
Tungsteno in Lamiera	Argentato Lucente	≥ 19.2 g/cm ³	≥ 99.95 %	2.0/4.0 mm	Può essere fornito lucidato, grezzo, ecc.	Leghe di tungsteno, lastre, fogli, dischi
Tungsteno in Rettangoli	Argentato Lucente	≥ 19.2 g/cm ³	≥ 99.95 %	max 700 mm	Come richiesto dal Cliente	Elettrodi e Componenti
Tungsteno in Barchette	Argentato Lucente	≥ 19.2 g/cm ³	≥ 99.95 %	-	Come richiesto dal Cliente	Come supporti per fusione di vetro
Crogiuolo in Tungsteno	Argentato Lucente	≥ 19.2 g/cm ³	≥ 99.95 %	-	Come richiesto dal Cliente	Ideale per fondere materie prime rare
Lega di Rame al Tungsteno	Argentato Lucente	da ≥ 16.75 a ≥ 13.8 g/cm³	≥ 99.95 %	-	CuW90 - CuW85 CuW80 - CuW75 CuW70	Macchinari, energia elettrica, aviazione
Tungsteno in Corda	Filo Rivestito	≥ 19.2 g/cm ³	≥ 99.95 %	Stand No. Ф 1.8mm - Ф 3.0mm	Nuclei o altro: 19x7	Energia elettrica, componenti
Tungsteno-Alloy per la Pesca	Argentato Lucente	da ≥ 17 a ≥ 18.5 g/cm³	-	-	Diversi pesi e misure	Esche per la pesca
Leghe di Tungsteno ad Alta Densità	Argentato Lucente	da ≥ 17 a ≥ 18.5 g/cm³	≥ 99.95 %	-	Come richiesto dal Cliente	Rotori inerziali, settore radioattivo
Elettrodi in Tungsteno	Argentato Lucente	≥ 13.8-14 g/cm ³	≥ 99.95 %	-	Come richiesto dal Cliente	Elettrodi di saldatura, elettrodi di scarico
Particolari a Disegno in Tungsteno	Argentato Lucente	≥ 19.2 g/cm ³	≥ 99.95 %	Come richiesto dal Cliente	Come richiesto dal Cliente	Componenti, lavorati, semilavorati

MOLIBDENO

Il molibdeno è un **metallo di transizione molto duro** e, così come il tantalio, tra gli elementi è quello contraddistinto da uno dei più alti punti di fusione.

In piccola quantità ha un effetto indurente sull'acciaio.

La percentuale maggiore del molibdeno prodotto viene impiegata nelle leghe metalliche ad alta durezza ed acciai resistenti ad alte temperature.

Alcune applicazioni del Molibdeno:

- Impianti nucleari.
- Industria petrolchimica.
- Industria metallurgica.
- Industria siderurgica.
- Industria meccanica.
- Industria tessile.
- Settore aerospaziale.
- Produzione di pnei filamenti, protesi dentarie, vernici ecc.

Prodotti	Standard	Densità	Purezza	Realizzazione	Elementi	Utilizzo
Molibdeno Tondo in Barre	GB/T 4188-84	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	Pb - Bi - Sn - Sb - Cd Fe - Ni - Al - Si - Ca Mg - P - C - O - N	Elettrodi, elementi interno forni
Molibdeno Piatto	GB/T 3462-2007	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	Mo-1/99.99 Mo-2/99.98 Mo-3e4/99.95	Tratt. materiali grezzi, additivo per leghe
Molibdeno in Lastre	GB 3876-83	≥ 10.2 g/cm ³	≥ 99.95 %	Vari spessori in base alle esigenze del cliente	Mo1/JMo1 Mo2 Mo Ti0.5	Produzione di componenti, crogioli
Molibdeno in Filo	GB/T 4812-2003	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	Mo - O - N - C Si - Fe	Filamenti, elettrodi, cavi radio
Molibdeno in Tubi	-	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	W - Si - O - Ni - Na N - K - Fe - Cu Cr - C	Forni a temperature elevate
Molibdeno a Disegno	-	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	W - Si - O - Ni - Na N - K - Fe - Cu Cr - C	Elettrodi e componenti
Mandrini in Molibdeno	-	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	W - Si - O - Ni - Na N - K - Fe - Cu Cr - C	Tubi di acciaio, piercing
Crogioli in Molibdeno	-	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	Mo - O - N C - Si	Metallurgia, macchinari
Contrappesi in Molibdeno	-	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	W - Si - O - Ni - Na N - K - Fe - Cu Cr - C	Velivoli, yacht, settore radioattivo
Parti Fabbricate in Molibdeno	-	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	-	Forni industriali e ad alte temperature
ega di Molibdeno TZM	-	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	Titanio Molibdeno Zirconio	Alte temperature
articolari a Disegno in Molibdeno	-	≥ 10.2 g/cm ³	≥ 99.95 %	Come richiesto dal cliente	W - Si - O - Ni - Na N - K - Fe - Cu Cr - C	Componenti, lavorati, semilavorati

Laminati e Barre in Alluminio/Ottone/Rame Superleghe/Titanio/Nichel

TeknoSteel srl Via Sisinnio, 41 - 00178 Roma Tel. 06. 959.45.021 - Fax 06.565.61.697

info@teknosteelsrl.com - www.teknosteelsrl.com P.IVA/C.F. 11611351005

La tua filiera inizia da qui.

Azienda leader nella commercializzazione di materie prime, TeknoSteel offre ai propri partner un servizio pre e post-vendita, garantendo inoltre una consulenza frutto di anni di esperienza nell'industria metalmeccanica.

Professionalità, passione e tempestività, sono i valori su cui si fonda l'azienda, in grado di fornire oggi, alcune tra le materie nobili per eccellenza: tungsteno, molibdeno, tzm.

PIASTRE		CARAT	TERISTICHE MECCANICHE TIPICHE								
LEGA	5083 O/H111		6082 T651	2017A T451	7075 T651/T652	ALUSTAMP 7					
Designazione Alfanumerica	AI Mg 4,5 Mn	Al Mg 4,5 Mn	Al Mg Si 1	Al Cu Mg 1	Al Zn Mg Cu 1,5						
Designazione Commerciale	Peraluman	Peraluman	Anticorodal	Avional	Ergal 55						
Spessori in magazzino, altri su richiesta	da 5 a 200 mm	da 20 a 1.000 mm	da 5 a 200 mm	da 6 a 300 mm	da 6 a 200 mm	da 20 a 600 mm					
Durezza HB	min. 77	70	min. 105	min. 110	170	117					
Resistenza Rm (N/mm²)	min. 295	240 - 290	min. 350	430	575	370					
Allung. Rp 0,2 (N/mm²)	min. 150	110 - 130	min. 310	285	510	325					
Rottura 5%	max 17	16	8	max 13	max 8	4					
Peso specifico Kg/dm³	2,66	2,66	2,70	2,78	2,81	2,80					

Leghe: Serie 2000 - 5000 - 6000 - 7000 Assortimento completo da sp. 5 sp. 200 per laminati e sp. fino a 1000 per fusti. **TeknoSteel** dispone di due linee di taglio a misura delle piastre con disco e/o nastro per settore stampo e meccanico.

ESTRUSI		CARAT	TERISTICHE N	IECCANICHE T	IPICHE		
LEGA	EN 573 AW NUMERICA	EN 573 AW Alfa Numerica	Stato Fisico	Rm N/mm²	Rp 0,2 N/mm²	A%	НВ
2011	9002/5	Al Cu Bi Pb	T3 T8	360 400	300 310	12 15	115 120
2017	9002/2	Al Cu Mg 1	ТЗ	380	260	10	110
6060	9006/1	Al Mg Si 0,5	T5 T6	205 230	165 200	12 12	65 72
6082	9006/4	Al Mg Si 1	Т6	310	260	10	95
6012		Al Mg Si Pb	T6	360	320	10	105
6026			T6 T8 T9	360 370 400	330 340 380	10 10 8	100 105 110
6262			T8 T9	350 380	310 350	12 4	105 110
7075	9007/2	Al Zn Mg Cu 1,5	Т6	575	510	8	170

Leghe: Serie 2000 - 6000 - 7000

Tondi: da Ø 6 a Ø 600 mm trafilati/fusi e torniti.

Quadrati: da 10 a 200 mm trafilati/fusi e torniti.

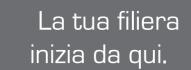
Piatti: da sp. 2 a sp. 100mm. Larghezza max 310

TeknoSteel dispone di segatrice automatica per il taglio a misura di barre tonde, quadrate e piatte.

	LEGHE DI	OTTONE	
CW503L	CW505L	CW506L	CW508L
Cu Zn20 (Ot 80 - Similoro)	Cu Zn30 (Ot 70)	Cu Zn33 (Ot 67)	Cu Zn37 (Ot 63)
CW508L/CW510L con Pb < 80 ppm	CW510L	CW607N	CW612N
CuZn37, CuZn42	Cu Zn42	Cu Zn38 Pb1	Cu Zn39 Pb2
CW614N	CW617N	CW618N	CW624N
Cu Zn39 Pb3	Cu Zn40 Pb2	Cu Zn40 Pb2 Al	Cu Zn43 Pb2 Al
			CW713R CuZn37MnAl2PbSi

	LEGHE DI RAME											
Brush Alloy 3	Brush Alloy 10	Brush Alloy 25	Brush Alloy M25									
Brush Alloy 174	Brush Alloy 190	Hovadur CB2	Hovadur CCNB									
Hovadur CCZ	Hovadur CNB	Hovadur CNCS	CuAl10Ni5Fe4									
Cu-ETP	CuNi10Fe1Mn	CuSn6	Tellurium Copper									

	LEGHE D	I NICHEL	
Nilo® 36/ Invar®	Nilo® 42 / Invar®	Nitronic 50	Nitronic 60
Nimonic® 75	Nilomag® 77	Nimonic® 80A	Nimonic® 90
Nickel 200 / 201	Nimonic® 263	Incoloy® 330	Monel® 400
Inconel® 600	Inconel® 601	Incoloy® 625	Inconel® 625 LCF
Inconel® 686	Inconel® 718	Incoloy® 800	Incoloy® 825
Incoloy® 901	Incoloy® 925	Incoloy® A-286	Hastelloy® C-22
Hastelloy® C-276	Hastelloy® C-2000	Incoloy® DS	Nilo® K / Kovar®
Monel® K-500	Waspalloy®	Hastelloy® X	Inconel® X-750


	TITA	INIO	
Grade 1	Grade 2	Grade 3	Grade 4
Grade 5	Grade 7	Grade 9	Grade 23

ACCIAIO INOX

INOX:	EUROPE	U,S,A,	ITALY	FRANCE	U.K.	GERMANY	RUSSIA FED.	JAPAN	SPAIN
CORRISPONDENZA DESIGNAZIONI	EN	ASTM	UNI	AFNOR	BSI	DIN	GOST	JIS	UNE
Acciai	X 12 CrMnNiN 17-7-5	201	-	Z12 CMN	284 S 16	-	-	SUS 201	-
Austenitici	1.4372 X 10 CrNi 18-08	301	X 12 CrNi 17 07	17-07 Az Z 11 CN 18-08	301 S 21	1.4310	_	SUS 301	X 10 CrNi
	1.4310 X 9 CrNi 18-09	302		7 12 CN 18-08	302 S 25	1.4319	-	SUS 302	18-08
	1.4325 X 8 CrNiS 18-09	303	X 10 CrNi 18 09 X 10 CrNiS	Z 8 CNF 18-09	303 S 21	1.4305	_	SUS 303	x 10 CrNiS
	1.4305 X 5 CrNi 18-10	304	18 09 X 5 CrNi	Z 7 CN 18-09	303 S 31 304 S 15	1.4303	08 Ch 18N 10	SUS 304	18-09 x 6 CrNi
	1.4301 X 2 CrNiN 18-10		18 10 X 2 CrNiN		304 S 16		08 Ch 18N 11		19-10
	1.4311 X 2 CrNi 18-09	304 LN	18 11	Z 3 CN 18-10 Az		1.4311	-	SUS 304 LN	-
	1.4307 X 2 CrNi 19-11	304 L	- X 2 CrNi	Z 3 CN 19-09	304 S 11	1.4307	-	SUS 304 L	x 2 CrNi 19-10
	1.4306 X 4 CrNi 18-12	304 L	18 11 X 8 CrNi	Z 3 CN 18-10	304 S 11	1.4306	03Ch 18N 11	SUS 304 L	-
	1.4303 X 15 CrNiSi 20-12	305	18 12	Z 8 CN 18-12	305 S 19	1.4303	-	SUS 305	-
	1.4828	309	X 16 CrNi 23 14	Z 17 CNS 20-12	309 S 24	1.4828	20 Ch 23N 13	SUH 309	-
	X 12 CrNi 23-13 1.4833	309 S	X 6 CrNi 23 14	Z 15 CN 23-13	-	1.4833	-	SUS 309 S	-
	X 8 CrNi 25-21 1.4845	310 S	X 6 CrNi 25 20	Z 8 CN 25-20	310 S 16	1.4845 1.4842	10 Ch 23N 18	SUS 310 S	-
	X 15 CrNiSi 25-21 1.4841	314	X 16 CrNiSi 25 20	Z 15 CNS 25-20	-	1.4841	20 Kh 25N 20 S 2	-	-
	X 5CrNiMo 17-12-2 1.4401	316	X 5 CrNiMo 17 12	Z 7 CND 17-11-02	316 S 31	1.4401	-	SUS 316	X 6 CrNiMo 17-12-03
	X 3 CrNiMo 17-13-3 1.4436	316	X 5 CrNiMo 17 13	Z 7 CND 17-12-02	316 S 33	1.4436	-	SUS 316	-
	X 2 CrNiMo 17-12-2 1.4404	316 L	X 2 CrNiMo 17 12	Z30ND 17-11-02 Z30ND 17-12-02	316 S 11	1.4404	03 Ch 17N 14 M2	SUS 316 L	X 2 CrNiMo 17-12-03
	X 2CrNiMo 18-14-3 1.4435	316 L	X 2 CrNiMo 17 13	Z 3 CND 18-14-03	316 S 13	1.4435	03 Ch 16N 15 M3	-	-
	X 2 CrNiMo 17-12-3 1.4432	316 L	X 2 CrNiMo 17 13	Z 3 CND	316 S 13	1.4432	-	SUS 316 L	-
	X 2 CrNiMoN 17-11-2 1.4406	316 LN	X 2 CrNiMoN 17 12	17-13-03 Z 3 CND 17-11 Az	-	1.4406	-	SUS 316 LN	-
	X 2 CrNiMoN 17-13-3 1.4429	316 LN	V 0 0-N:N/-N	Z 3 CND	-	1.4429	-	SUS 316 LN	-
	X 6 CrNiMoTi 17-12-2	316 Ti	X 6 CrNiMoTi	17-12 Az Z 6CNDT	320 S 31	1.4571	08 Ch 17 N13M2T	SUS 316 Ti	X 6 CrNiMoTi
	1.4571 X 6 CrNiMoNb 17-12-2	316 Cb	17 12 X 6 CrNiMoNb		-	1.4580	100h17N13M2T 08 Ch 16N	_	17-12-03
	1.4580 X 2 CrNiMo 18-15-4	317 L	17 12 X20 NiMo 18015		317 S 12	1.4438	13 M2B -	SUS 317 L	_
	1.4438 X 6 CrNiTi 18-10	321	X 2 CrNiMo 18016 X 6 CrNiTi	19-15-04 Z 6 CNT 18-10	321 S 31	1.4541	08 Ch 18 N 10T	SUS 321	-
	1.4541 X 10 CrNiTi 18-10	321H	18 11 X 8 CrNiTi	Z 6CNT 18-10	321 S 20	1.4878	12 Ch 18N 10T		_
	1.4878 X 6 CrNiNb 18-10	347	18 11 X 6 CrNiNb	Z 6 CNNb 18-10	321 S 51 347 S 31	1.4941 1.4550	08 Ch 18N 12B	SUS 347	_
	1.4550 X 13 NiCrSi 35-16	330	18 11	Z 20 NCS 33-16		1.4864	-	SUH330	-
	1.4864 X 2 CrNi 12			2 20 1103 33-10	-		-	3011330	
	1.4003 X 6 CrAl 13	-	STR 12			1.4003			-
Acciai Ferritici	1.4002 X 2 CrTi 12	405	X 6 Cr Al 13	Z 8 CA 12	405 S 17	1.4002	-	SUS 405 SUH 409 L	-
	1.4512 X 6 Cr 13	409	X 6 Cr Ti 12 X 6 Cr13	Z 3 CT 12	409 S 19	1.4512	-	SUS 409	-
	1.4000 X 6 Cr 17	410 S	X 12 Cr13	Z 8 C 12	403 S 17	1.4000	Z 8 Ch 13	SUS 403	-
	1.4016 X 6 CrMo 17-1	430	X 8 Cr 17	Z 8 C 17	430 S 17	1.4016	12 Ch 17	SUS 430	X 6 Cr 17
	1.4113 X 3 CrTi17	434	X 8 CrMo 17	Z 8 CD 17-01	434 S 17	1.4113	-	SUS 434	-
	1.4510	439	X 6 CrTi 17	Z 4 CT 17	-	1.4510	08 Ch 17T	SUS 430 LX	-
	X 2 CrMoTi18-2 1.4521	444	-	Z 3 CDT 18 02	-	1.4521	-	SUS 444	-
	X 18 CrN28 1.4749	446	X 16 Cr26	-	-	1.4749	15 Ch 28	SUH 446	-
Acciai Martensitici	X 12 Cr13 1.4006	410 403	X 12 Cr 13	Z 10 C 13	410 S 21	1.4006	12 Ch 13	SUS 410 SUS 403	-
rrai tGHƏILILI	X 20 Cr 13 1.4021	420	X 20 Cr 13	Z 20 C 13	420 S 29 420 S 37	1.4021	20 Ch 13	SUS 420 J1	X 20 Cr 13 X 30 Cr 13
	X 30 Cr 13 1.4028	420	X 30 Cr 13	Z 33 C 13	420 S 45	1.4028	30 Ch 13	SUS 420 J2	X 40 Cr 13
	X 39 Cr13 1.4031	420	-	Z 33 C 13	420 S 45	1.4031	-	-	-
	X 46 Cr13 1.4034	420	X 40 Cr 14	Z 44 C 14	-	1.4034	40 Ch 13	-	-
	1.7007		L	1					

Acciai Speciali Acciai per Stampi Acciai Inox

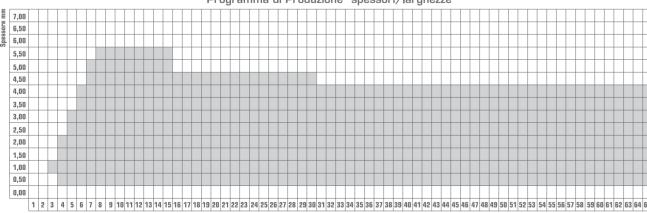
TeknoSteel srl Via Sisinnio, 41 - 00178 Roma Tel. 06. 959.45.021 - Fax 06.565.61.697 info@teknosteelsrl.com - www.teknosteelsrl.com P.IVA/C.F. 11611351005

Azienda leader nella commercializzazione di materie prime, TeknoSteel offre ai propri partner un servizio pre e post-vendita, garantendo inoltre una consulenza frutto di anni di esperienza nell'industria metalmeccanica.

Professionalità, passione e tempestività, sono i valori su cui si fonda l'azienda, in grado di fornire oggi, alcune tra le materie nobili per eccellenza: tungsteno, molibdeno, tzm.

BARRE DI TORNITURA

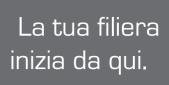
	ACCIAI INOX			ACCIAI LEGATI		ACCIAI AL CARBONIO	CCIAI AL CARBONIO ACCIAI AUTOMATICI			
W. 1.4305 = AISI 303	W. 1.4845 = AISI 310	W. 1.4035 = AISI 420C+S	W. 1.7139 = 16 Mn Cr S 5	W. 1.6510 = 39 Ni Cr Mo S3	W. 1.6582 = 34 Cr Ni Mo 6	W. 1.1014 = RFe80	W. 1.0715 = 11S Mn 30	W. 1.0762 = 44 S Mn 28	TI. 6AL4V ELI F136	
W. 1.4570 = AISI 303Cu	W. 1.4462 = AISI 329A	W. 1.4122 = AISI 420RM	W. 1.7142 = 16 Mn Cr S 5 Pb	W. 1.6510 = 39 Ni Cr Mo S3 Pb	W. 1.6580 = 30 Cr Ni Mo 8	W. 1.0302 = C10Pb	W. 1.0736 = 11S Mn 37	W. 1.0763 = 44 S Mn Pb 28	TI. GR.2 ASTM F67	
W. 1.4307 = AISI 304	W. 1.4006 = AISI 410	W. 1.4016 = AISI 430	W. 1.7149 = 20 Mn Cr S 5	W. 1.7201 = 12 Cr Mo 4	W. 1.8519 = 31 Cr Mo V9	W. 1.1181 = C35	W. 1.0718 = 11S Mn Pb30		TI. GR.5 ASTM B348	
W. 1.4567 = AISI 304Cu	W. 1.4005 = AISI 416	W. 1.4104 = AISI 430F	W. 1.5708 = 12 Ni Cr 3	W. 1.7244 = 18 Cr Mo S4	W. 1.8159 = 51 Cr V4	W. 1.0502 = C35Pb	W. 1.0737 = 11S Mn Pb37		TI. 6AL4V AMS 4928	
W. 1.4404 = AISI 316L	W. 1.4021 = AISI 420A	W. 1.4105 = AISI 430F	W. 1.5715 = 16 Ni Cr S 4	W. 1.7213 = 25 Cr Mo S4	W. 1.3505 = 100 Cr 6	W. 1.0503 = C45	W. 1.0739 = 11S Mn Pb 37 Te+Bi		TI. 6AL4V MIL-T 9047	
W. 1.4429 = AISI 316MN/1	W. 1.4028 = AISI 420B	W. 1.4057 = AISI 431	W. 1.5715 = 16 Ni Cr S 4 Pb	W. 1.2330 = 35 Cr Mo 4		W. 1.0504 = C45Pb	W. 1.0726 = 36 S 20			
W. 1.4435 = AISI 316LM/1	W. 1.4029 = AISI 420BF	W. 1.4112 = AISI 440B	W. 1.5752 = 15 Ni Cr 13	W. 1.7225 = 42 Cr Mo 4		W. 1.0540 = C50	W. 1.0727 = 46 S 20			
W. 1.4571 = AISI 316 Ti	W. 1.4031 = AISI 420C	W. 1.4125 = AISI 440C	W. 1.6569 = 17 Ni Cr Mo S6-4	W. 1.7227 = 42 Cr Mo S4		W. 1.1213 = CF53	W. 1.0757 = 46 S 20 Pb			
W. 1.4578 = AISI 316Cu	W. 1.4034 = AISI 420C	W. 1.4542 = AISI 630	W. 1.6526 = 20 Ni Cr Mo S2-2	W. 1.7222 = 42 Cr Mo 4 Pb			W. 1.0765 = 36 S Mn Pb 14			


Elenco delle principali qualità di acciaio fornite dalla TeknoSteel.

TIPI DI		UNIFICAZIONI		SIGLE DI		COMP	OSIZIONE (CHIMICA	INDICATIV	/A	STATO DI	DUREZZA	RESISTENZA			TRA	ATTAMENTI TERM	ICI				SAGOMARIO
ACCIAI	UNI / EN /DIN	AISI	N.WERKSTOFF	MERCATO	C	Si	Mn Cr	Mo	Ni V		ORNITURA	BRINEL HB	R=Kg/mm²	Ricottura di Lavorabilità °C	Tempra °C	Spegnimento	Rinvenimento °C	Resistenza R	HRC dopo Spegnimento	HRC durezza di Impiego	- IMPIEGHI E CARATTERISTICHE	MM
Da Costruzione	C 45	1042	1.1191 (1.1730)	V 945	0,45	0,30	0,70				Naturale	175 ÷ 230	~ 60 ÷ 75	650 ÷ 700	820 ÷ 860	Acqua - Olio	580 ÷ 620			Durezza HRC Max 57	Organi di macchine mediamente duri e tenaci quali alberi, perni, ingranaggi, portastampi, normali sottostampi, adatto per trattamenti di bonifica e tempra superficiale.	Tondi fino a Ø 1200 Lamiere fino a spessore 1000
	C 18NiCrMo3			E 112	0,18	0,30	0,80 0,85	0,20 1	1,35		Ricotto	MAX 225	~ 76	650 ÷ 700	840 ÷ 860 Cementazione 870 ÷ 910	Olio	150 ÷ 200	A Cuore R 125 ÷ 150			Acciaio largamente impiegato per pezzi che richiedono elevate caratteristiche meccaniche unite ad un elevata durezza superficiale conferita dal trattamento di cementazione - tempra quali ingranaggi, perni, boccole, stampi per materie plastiche con elevata durezza superficiale.	Tondi fino a Ø 800 Lamiere fino a spessore 300
	39NiCrMo3 (36CrNiMo4)	~ 9840	(1.6511)		0,38	0,30	0,70 0,90	0,20	0,90		Bonificato	250 ÷ 285	85 ÷ 95	650 ÷ 700	830 ÷ 850	Olio	560 ÷ 640				Trova le più svariate applicazioni allo stato bonificato nella costruzione di organi meccanici soggetti a torsione - fatica, sollecitazioni dinamiche quali: alberi, tiranti, ingranaggi, portastampi sollecitati, stampi integrali.	Tondi fino a Ø 1000 Lamiere fino a spessore 300
	42CrMo4	4140	1.7225		0,42	0,30	0,80 1,00	0,20			Bonificato	250 ÷ 285	85 ÷ 95	680 ÷ 720	830 ÷ 850	Olio	560 ÷ 640				Acciaio da bonifica per parti di macchine sollecitate, portastampi sollecitati, matrici per materie plastiche normali, adatto per impieghi a caldo fino a 4000 °C e per trattamento di nitrurazione.	Tondi fino a Ø 1000 Lamiere fino a spessore 500
Per Stampi a Caldo e Materie Plastiche	~ X37CrMoV51KU X37CrMoV51KU Rifuso ESR	H 11	1.2343	W300 UD12	2 0,37	1,00	0,40 5,00	1,30	0,40		Ricotto	Max 230	~ 80	750 ÷ 800	1000 ÷ 1040	Aria - Olio Bagno Termale			50 ÷ 56	HRC 44 ÷ 54	Elevata tenacità a caldo e resistenza allo shock termico ed alla fatica in esercizio dello stampo, nitrurabile. Acciaio universale per utensili per la lavorazione a caldo adatto per: stampi per la pressofusione delle leghe leggere, filiere per estrusione a caldo di leghe leggeredi AL, matrici e punzoni per stampaggio su pressa, lame per cesoiare a caldo, stampi per materie plastiche, bussole di	e Piatti fino a spessore 600
	~ X40CrMoV511KU X40CrMoV511KU Rifuso ESR	H 13	1.2344	W302 UD14	4 0,40	1,00	0,40 5,30	1,40	1,00		Ricotto	Max 230	~ 80	750 ÷ 800	1020 ÷ 1060	Aria - Olio Bagno Termale			50 ÷ 56	HRC 46 ÷ 55	Rispetto al BP37 (vedi sopra) grazie al maggior contenuto di vanadio, risultano migliorate le caratteristiche di resistenza al caldo, alla compressione e all'abrasione, diminuisce la tenacità. Nitrurabile. Per maggiori esigenze è disponibile e consigliabile la versione ESR (rifuso sottoelettroscoria). Rinvenire almeno 2 volte.	Tondi fino a Ø 800 Lamiere fino a spessore 600
	30CrMoV1227KU	~ H 10	~ 1.2365	W320 UD27	7 0,30	0,30	0,35 3,00	2,80	0,50		Ricotto	Max 230	~ 80	750 ÷ 800	1010 ÷ 1060	Olio - Bagno Termale			52 ÷ 56	HRC 44 ÷ 54	Acciaio per la lavorazione a caldo, con elevata resistenza al rinvenimento, buona tenacità, raffredabile ad acqua in esercizio Adatto per stampi per pressofusione di leghe pesanti, filiere, mandrini, tacchi pressatori per presse di estrusione stampaggio a caldo, bussole interne, punzoni, filiere, cesoie sottoposte a forti sollecitazioni termiche. Rinvenire almeno 2 volte	Tondi fino a Ø 400
	56NiCrMoV7KU (54NiCrMoV6KU)	~ L6	1.2714 (1.2711)	W500 UR16	6 0,55	0,30	0,70 1,10	0,50	0,10		Bonificato	350 ÷ 410	120 ÷ 140	650 ÷ 700	830 ÷ 870 860 ÷ 900	Olio Aria			58 56	HRC 38 ÷ 43	Elevata tenacità a caldo, resistenza allo shock termico ed alla fatica a caldo. Adatto per la costruzione di stampi per magli utensili per l'estrusione di tubi a barre, utensili di piegatura e coniatura, stampi per materie plastiche, blocchi stampi di grosse dimensioni. Se necessita per stampi plastica richiedere la versione lucidabile e fotoincidibile. Rinvenire almeno 2 volte.	e lional tino a M 1200
	(DIN)40CrMnMo7 (DIN)40CrMnMoS86	~ P 20	1.2311 (1.2312)	M201 UD23 M200 UD24			1,50 1,90 1,50 1,90			S 0,05	Bonificato	280 ÷ 325	95 ÷ 110	710 ÷ 740	840 ÷ 870	Aria - Olio Bagno Termale 180 ÷ 220° C			(600 ÷ 650) Rinvenimento	HRC 30 ÷ 34	Per le sue caratteristiche di temperabilità, lavorabilità e lucidabilità è molto diffuso per la costruzione di medi e grossi stampi per materie plastiche, adatto per indurimento superficiale mediante nitrurazione, viene impiegato anche per la costruzione di portastampi e componenti meccanici vari. È disponibile il tipo risolforato (s0,05%) che è più lavorabile, non lucidabile, non fotoincidibile.	- Lamiere fino a sp. 650 (1.2311)
	(DIN)40CrMnNiMo864	~ P 20+Ni	1.2738	M238 UD25	5 0,40	0,30	1,50 1,90	0,20			Bonificato	280 ÷ 325	95 ÷ 110	710 ÷ 740	840 ÷ 870	Olio Bagno Termale			(600 ÷ 650) Rinvenimento	HRC 30 ÷ 34	Simile al precedente con l'aggiunta di Ni che aumenta la temperabilità e quindi migliora l'uniformità della durezza su tutta la sezione. Adatto per stampi per materie plastiche di grosse dimensioni con incisione profonde. È lucidabile e fotoincidibile.	Tondi fino a Ø 1200 Lamiere fino a spessore 1200
	(DIN) ~X33CrS16	~ 420F	1.2085	~ M314 UK02	2S 0,33	0,50	1,00 16,00			S 0,10	Bonificato	280 ÷ 325	95 ÷ 110	760 ÷ 780	1000 ÷ 1050	Olio			(600 ÷ 650) Rinvenimento	30 ÷ 34	Acciao inox martensitico, bonificato con buona resistenza alla corrosione ed alla buona tenacità, a lavorabilità migliorata. Stampi e portastampi per materie plastiche (esempio PVC), in particolare dove è richiesta resistenza all'usura abrasiva. Atto a lavorare in presenza di umidità.	Lamiere fino a spessore 500
	(DIN) ~X40Cr14	~ 4200	1.2083	M310 UK040	(R) 0,40	0,80	0,50 14,50		0,30		Ricotto	Max 220	~ 70	750 ÷ 850	1000 ÷ 1040	Olio			53 ÷ 55	46 ÷ 51	Acciaio inossidabile per stampi per lavorazione di materie plastiche chimicamente corrosivencon additivi abrasivi. Rinvenire almeno 2 volte. Per maggiori esigenze è disponibile e consigliabilem la versione ESR (rifuso sotto elettroscoria)	
Per Stampi a Freddo	X205Cr12KU	(~ D3)	1.2080	K100 UK20	0 2,00	0,20	0,30 11,50				Ricotto	Max 250	~ 85	800 ÷ 850	940 ÷ 970	Olio Bagno Termale			63 ÷ 65	58 ÷ 62	Acciaio a variazione dimensionale contenuta, buona resistenza all'usura e all'iabrasione. Classico acciaio per utensili ad altis simo rendimento impiegato nella costruzione di punzoni, matrici per tranciatura a freddo, godroni, rulli filettatori, stampi co niatori, utensili per lavorazione legno, ceramica, mattoni. Rinvenire almeno 2 volte. Si consiglia taglio con elettroerosione a filo	Lamiere fino a spessore 300
	X155CrVMo121KU	(~ D2)	1.2379	K110 UK15	5 1,55	0,30	0,30 11,50	0,70	1,00		Ricotto	Max 250	~ 85	800 ÷ 850	1020 ÷ 1040	Aria - Olio Bagno Termale			63 ÷ 65	58 ÷ 62	Simile al precedente da impiegare nei casi dove è richiesta maggiore tenacità conferita sia dal più basso tenore di C che dal Mo il V affina il grano e aumenta la resistenza all'usura. Per trattamenti superficiali di nitrurazione oppure rivestimenti P.V.D: tempra °C 1060 – 1080 rinvenim.: °C 520 - 570 rinvenire almeno 2 volte. Idoneo al taglio con elettroerosione a filo fino a spess. 80mm	a
	90MnVCr8KU	(~ 02)	1.2842	K720 UM20	0,90	0,25	2,00 0,35		0,13		Ricotto	Max 230	~ 78	680 ÷ 720	790 ÷ 820	Olio			63 ÷ 65	58 ÷ 62	Discreta resistenza all'usura, buona lavorabilità, discreta stabilità dimensionale. Adatto per utensili da taglio (matrici e punzoni) e per la formatura a freddo, per calibri e tamponi di precisione. Rinvenire almeno 2 volte.	Tondi fino a Ø 800 Lamiere fino a spessore 400
	110W4KU	~ F1	1.2516		1,10	0,30	0,30 0,10		0,10	1,10	Ricotto (Rettificato)	Max 230	~ 78	730 ÷ 770	780 ÷ 830	fino a Ø 15 Olio oltre Acqua			64 ÷ 66	58 ÷ 62	Legato al Wolframio - Vanadio dotato di elevata resistenza all'usura, trova impiego nella costruzione di utensili di piccole dimensioni con elevata precisione come punte, aghi, punzoni, spine di guida; viene normalmente fornito in barre rettificate ISA H8.	Tondi fino a Ø 40
	40NiCrMoV16KU		(1.2767)	(K600) (UR 4	0,45	0,30	0,45 1,40	0,30 4	1,00		Ricotto	Max 260	~ 87	610 ÷ 650	840 ÷ 880	Aria - Olio			53 ÷ 57 54 ÷ 58	48 ÷ 54	Elevata tenacità e temperabilità. Adatto alla costruzione di utensili altamente sollecitati, incudini per magli, mazze e berte, stampi per coniatura, per tranciatura, per l'industria delle posate, coltelli per cesoie per tranciare grossi spessori, utensili piegatori, stampi per materie plastiche. Rinvenire almeno 2 volte.	Tondi fino a Ø 400 Lamiere fino a spessore 500
Tenasteel ® ®	Tenasteel ® ®				1,00		0,35 7,50	2,60	0,30	П	Ricotto	Max 250	~ 85		1030 ÷ 1050	Olio - Bagno Termale (vedi scheda tecnica)			62 ÷ 63	49 ÷ 62	Nuovo acciaio a freddo polivalente che, grazie anche alla sua microstruttura, garantisce ottime caratteristiche di tenacità, doppia rispetto all'acciaio 1.2379. Largo impiego nelle più svariate applicazioni sia in tranciatura che in imbutitura; massima idoneità a trattam. e rivestimenti, ottima resistenza all'usura, miglior prestazione degli utensili con conseguenti minor costi di manutenzione	ai Lamiere fino a spessore 330

NASTRI ACCIAIO INOX

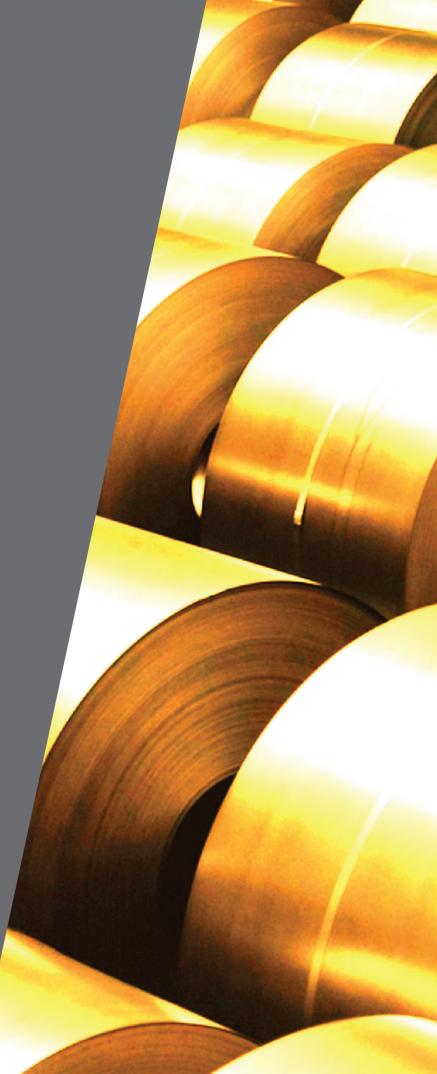
E.N.	PPI-ITC	SIGLA		ANAL	ISI CHIMICA INDIC <i>i</i>	ATIVA		PROGR PRODU	AMMA IZIONE
10088 - 3 n.	nome	JIOLA	С	Cr	Ni	Mo	Altro	Standard	Richiesta
1.4006	410	X12Cr13	0,08-0,15	11,50-13,50	-	-	Ni <0,75	-	PPI
1.4016	430	X6Cr17	<0,08	16,00-18,00	-	-	-	PPI	-
1.4016	430st	X6Cr17	<0,03	16,00-18,00	-	-	-	PPI	-
1.4021	420A	X20Cr13	0,16-0,25	12,00-14,00	-	-	-	-	PPI
1.4028	420B	X30Cr13	0,26-0,35	12,00-14,00	-	-	-	-	PPI
1.4034	420C	X46Cr13	0,43-0,50	12,50-14,50	-	-	-	-	PPI
1.4301	304	X5CrNi18-10	<0,07	17,00-19,50	8,00-10,50	-	N <0,11	PPI	-
1.4303	305	X4CrNi18-12	<0,06	17,00-19,00	11,00-13,00	-	N <0,11	PPI	-
1.4306	304st	X2CrNi19-11	<0,03	18,00-20,00	10,00-12,00	-	N <0,11	-	PPI
1.4307	304L	X2CrNi18-9	<0,03	17,50-19,50	8,00-10,00	-	N <0,11	PPI	-
1.4310	302	X10CrNi18-8	0,05-0,15	16,00-19,00	6,00-9,50	<0,80	N <0,11	-	PPI
1.4401	316	X5CrNiMo17-12-2	<0,07	16,50-18,50	10,00-13,00	2,00-2,50	N <0,11	PPI	-
1.4404	316L	X2CrNiMo17-12-2	<0,03	16,50-18,50	10,00-13,00	2,00-2,50	N <0,11	PPI	-
1.4410	2507	X2CrNiMoN25-7-4	<0,03	24,00-26,00	6,00-8,00	3,00-4,50	N 0,20-0,35	-	PPI
1.4462	2205	X2CrNiMoN22-5-3	<0,03	21,00-23,00	4,50-6,50	2,00-3,50	N 0,10-0,22	-	PPI
1.4541	321	X6CrNiTi18-10	<0,08	17,00-19,00	9,00-12,00	-	Ti 5xC <0,70	PPI	-
1.4571	316Ti	X6CrNiMoTi17-12-2	<0,08	16,50-18,50	10,50-13,50	2,00-2,50	Ti 5xC <0,70	PPI	-
1.4876	800	X10NiCrALTi32-21	<0,12	19,00-23,00	30,00-34,00	-	Ti 0,15-0,6 AL 0,15-0,60	-	PPI
2.4816	600	NiCr15Fe	0,05-0,10	14,00-17,00	>=72,00	-	B <=0,06 Fe6,00-10,00	-	PPI
2.4851	601	NiCr23Fe	0,03-0,10	21,00-25,00	58,00-63,00	-	AL 1,00-1,70 Fe <18,00	-	PPI
2.4856	625	NiCr22Mo9Nb	0,03-0,10	20,00-23,00	>=58,00	8,00-10,00	Nb 3,15-4,15 Fe <5,00	-	PPI
2.4858	825	NiCr21Mo	<0,025	19,50-23,50	38,00-46,00	2,50-3,50	Ti 0,60-1,20 Cu 1,50-3,00	-	PPI



Vastri in Rotoli/Quadrotti/Bandelle

Spessori da 0,4 a 6 mm - Larghezze da 5 a 1.000mm - Bandelle da 100 a 1.000mm - Quadrotti da 200x200 a 1.000x1.000mm - Finiture Superficiali 2B, BA, satinati, 10

Nastri in Rotoli Rame - Ottone Bronzo - Inox



TeknoSteel srl

P.IVA/C.F. 11611351005

Via Sisinnio, 41 - 00178 Roma

Tel. 06. 959.45.021 - Fax 06.565.61.697 info@teknosteelsrl.com - www.teknosteelsrl.com

NASTRI IN OTTONE

CuZn37 (CW508L) CuZn36 (CW507L)	Stato Fisico	R300	R350	R410	R480	R550
Rm	(N/mm²)	300 - 370	350 - 400	410 - 490	480 - 560	>550
RpO,2	(N/mm²)	<180	>170	>300	>430	>500
A50mm	(%)	38	19	8	3	-
	Stato Fisico	H055	H095	H120	H150	H170
Durezza	HV	55 - 95	95 - 125	120 - 155	150 - 180	>170
	Stato Fisico	G010	G020	G030	G050	
Dimensioni grano		<0,015	0,015 - 0,030	0,020 - 0,040	0,035 - 0,070	
Durezza	HV	<120	<95	<90	<80	

CuZn33 (CW506L)	Stato Fisico	R280	R350	R420	R500
Rm	(N/mm²)	280 - 380	350 - 430	420 - 500	500
RpO,2	(N/mm²)	<170	>170	>300	>450
A50mm	(%)	40	23	6	
	Stato Fisico	H055	Н095	H125	H155
Durezza	HV	55 - 90	95 - 125	125 - 155	>155
	Stato Fisico	G010	G020	G030	G050
Dimensioni grano		<0,015	0,015 - 0,030	0,020 - 0,040	0,035 - 0,070
Durezza	HV	<120	<95	<90	<80

CuZn30(CW505L)	Stato Fisico	R270	R350	R410	R480	
Rm	(N/mm²)	270 - 350	350 - 430	410 - 490	>480	
RpO,2	(N/mm²)	<160	>170	>260	>430	
A50mm	(%)	40	21	9	-	
	Stato Fisico	H055	H095	H120	H150	
Durezza	HV	55 - 90	95 - 125	120 - 155	>150	
	Stato Fisico	G010	G020	G030	G050	G075
Dimensioni grano		<0,015	0,015 - 0,030	0,020 - 0,040	0,035 - 0,070	0,050 - 0,100
Durezza	HV	<120	<95	<90	<80	<70

CuZn20 (CW503L)	Stato Fisico	R270	R320	R400	R480
Rm	(N/mm²)	270 - 320	320 - 400	400 - 480	>480
Rp0,2	(N/mm²)	<150	>200	>320	>420
A50mm	(%)	38	20	5	
	Stato Fisico	H055	H085	H120	H155
Durezza	HV	55 - 85	85 - 120	120 - 155	>155
	Stato Fisico	G010	G020	G035	
Dimensioni grano		<0,015	0,015 - 0,030	0,025 - 0,050	
Durezza	HV	<105	<85	<75	

CuZn15 (CW502L)	Stato Fisico	R260	R300	R350	R410
Rm	(N/mm²)	260 - 310	300 - 370	350 - 420	>410
RpO,2	(N/mm²)	<170	>150	>250	>360
A50mm	(%)	36	16	4	-
	Stato Fisico	H055	H085	H105	H125
Durezza	HV	55 - 85	85 - 115	105 - 135	>120
	Stato Fisico	G010	G020	G035	
Dimensioni grano		<0,015	0,015 - 0,030	0,025 - 0,050	
Durezza	HV	<105	<85	<75	

NASTRI IN OTTONE

CuZn10 (CW501L)	Stato Fisico	R240	R280	R350
Rm	(N/mm²)	240 - 290	280 - 360	>350
RpO,2	(N/mm²)	<140	>200	>290
A50mm	(%)	36	13	4
	Stato Fisico	H050	H080	H110
Durezza	HV	50 - 80	80 - 110	>110

CuZn5 (CW500L)	Stato Fisico	R230	R270	R340
Rm	(N/mm²)	230 - 280	270 - 350	>340
Rp0,2	(N/mm²)	<130	>200	>280
A50mm	(%)	36	12	4
	Stato Fisico	H045	H075	H110
Durezza	HV	45 - 75	75 - 110	>110

CARATTERISTICHE FISICHE

COMPOSIZIONI CHIMICHE

Materiale	Densità g/cm³	Conduci Ms/m		Conducibilità Termica W/mk	Coeff. Espans. Termica 10 ⁶ /k	Modulo di Elasticità kN/mm²	Cu %	Zn %	Sn %
CuZn37	8,4	15,5	28	123	20,8	105	62 - 64	Rem	<0,1
CuZn36	8,4	15,5	27	116	20,3	105	63,5 - 65,5	Rem	<0,1
CuZn33	8,5	15,5	27	116	20,3	105	66 - 68	Rem	<0,1
CuZn30	8,5	16,3	28	120	19,9	110	69 - 71	Rem	<0,1
CuZn20	8,7	19,0	32	140	19,1	110	79 - 81	Rem	<0,1
CuZn35	8,8	21,1	37	159	18,7	115	84 - 86	Rem	<0,1
CuZn10	8,8	24,7	40	173	18,6	115	89 - 91	Rem	<0,1
CuZn5	8,9	33,3	40	173	18,6	115	94 - 96	Rem	<0,1

SPECIFICHE DI FORNITURA: OTTONE - RAME - BRONZO

Caratteristiche	Nastri in Rotoli	Nastri Bobinati	
Larghezza (mm)	4 - 320	4 - 50	
Spessore (mm)	0,10 - 3,00	0,15 - 2,00	
Peso (Kg)	4000 13 kg/mm Largh. Nastro	<1500	
Ø interno (mm)	140 - 300 - 400 - 500	127 - 300 - 400	
Ø esterno (mm)	<1480	1000	

NASTRI IN RAME

Cu-ETP(CW004A) Cu-PHC(CW020A) Cu-DHP(CW024A)	Stato Fisico	R220	R240	R290	R360
Rm	(N/mm²)	220 - 260	240 - 300	290 - 360	>360
Rp0,2	(N/mm²)	<140	>180	>250	>320
A50mm	(%)	33	8	4	2
	Stato Fisico		H065	H090	H110
Durezza	Durezza HV		65 - 95	90 - 110	>110

CuZn0,5 (CW119C)	Stato Fisico	R220	R240	R290	R360
Rm	(N/mm²)	220 - 260	240 - 300	290 - 360	>360
RpO,2	(N/mm²)	<140	>180	>250	>320
A50mm	(%)	33	8	-	-
	Stato Fisico	H040	H065	H085	H110
Durezza	HV	40 - 65	65 - 95	85 - 115	>110

CARATTERISTICHE FISICHE

Materiale	Densità g/cm³	Conducibilit Ms/m	tà Elettrica %IACS	Conducibilità Termica W/mk	Coeff. Espans. Termica 10º/k	Modulo di Elasticità kN/mm²
Cu-ETP	8,9	>55	101	391	17	115
Cu-PHC	8,9	>55	99	386	17	115
Cu-DHP	8,8	>46	92	350	17	115
Cu-ZnO,5	8,8	48	-	-	-	-

NASTRI IN BRONZO

CuSn4 (CW450K)	Stato Fisico	R290	R390	R480	R540	R610
Rm	(N/mm²)	290 - 390	390 - 490	480 - 570	540 - 630	>610
Rp0,2	(N/mm²)	<190	>210	>420	>490	>540
A50mm	(%)	40	11	4	3	-
	Stato Fisico	H070	H115	H150	H170	H190
Durezza	HV	70 - 100	115 - 155	150 - 180	170 - 200	>190

CuSn5 (CW451K)	Stato Fisico	R310	R400	R490	R550	R630	R690
Rm	(N/mm²)	310 - 390	400 - 500	490 - 580	550 - 640	630 - 720	>690
Rp0,2	(N/mm²)	<250	>240	>430	>510	>600	>670
A50mm	(%)	45	14	8	4	2	-
	Stato Fisico	H075	H120	H160	H180	H200	H220
Durezza	HV	75 - 105	120 - 160	160 - 190	180 - 210	200 - 230	>220

CuSn6 (CW452K)	Stato Fisico	R350	R420	R500	R560	R640	R720
Rm	(N/mm²)	350 - 420	420 - 520	500 - 590	560 - 650	640 - 730	>720
RpO,2	(N/mm²)	<300	>260	>450	>500	>600	>690
A50mm	(%)	45	17	8	5	3	-
	Stato Fisico	H080	H125	H160	H180	H200	H220
Durezza	HV	80 - 110	125 - 165	160 - 190	180 - 210	200 - 230	>200

CuSn8 (CW453K)	Stato Fisico	R370	R470	R540	R600	R660	R740
Rm	(N/mm²)	370 - 450	450 - 550	540 - 630	600 - 690	660 - 750	>740
Rp0,2	(N/mm²)	<300	>280	>460	>530	>620	>700
A50mm	(%)	50	20	13	5	3	2
	Stato Fisico	Н090	H135	H170	H190	H210	H230
Durezza	HV	90 - 120	135 - 175	170 - 200	190 - 220	210 - 240	>230

CARATTERISTICHE FISICHE

COMPOSIZIONI CHIMICHE

Materiale	Densità g/cm³	Conduci Ms/m	ib. Elettr. %IACS		Coeff. Espans. Termica 10 ⁶ /k	Mod. Elasticità kN/mm²	Cu %	Zn %	Sn %	P %
CuSn4	8,9	11,0	20	84	17,8	110	Rem	>0,2	3,5 - 4,5	0,01 - 0,40
CuSn5	8,9	10,0	20	82	17,8	110	Rem	>0,2	4,5 - 5,5	0,01 - 0,40
CuSn6	8,8	9,0	20	84	17,8	110	Rem	>0,2	5,5 - 7,0	0,01 - 0,40
CuSn8	8,8	7,0	13	62	18,2	110	Rem	>0,2	7,5 - 8,5	0,01 - 0,40

